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AbstrACt
Cells succumbing to stress via regulated cell death (RCD) 
can initiate an adaptive immune response associated 
with immunological memory, provided they display 
sufficient antigenicity and adjuvanticity. Moreover, multiple 
intracellular and microenvironmental features determine 
the propensity of RCD to drive adaptive immunity. Here, we 
provide an updated operational definition of immunogenic 
cell death (ICD), discuss the key factors that dictate 
the ability of dying cells to drive an adaptive immune 
response, summarize experimental assays that are 
currently available for the assessment of ICD in vitro and in 
vivo, and formulate guidelines for their interpretation.

IntroduCtIon
Regulated cell death (RCD), a form of 
cellular demise that is governed by a genet-
ically encoded molecular machinery,1 2 has 
long been considered as an immunologi-
cally silent or even tolerogenic event.3 At 
least in part, this widely accepted view orig-
inated from the highly tolerogenic nature 
of programmed cell death (PCD), the phys-
iological variant of RCD that contributes to 
postembryonic development and adult tissue 
turnover.1 4 However, it has now become clear 
that, at least under specific circumstances, 
stress- induced RCD can drive an inflamma-
tory response that may culminate with the 
activation of cytotoxic T lymphocyte (CTL)- 
driven adaptive immunity coupled with the 

establishment of long- term immunological 
memory. Such a functionally unique form of 
stress- driven RCD is now usually referred to as 
immunogenic cell death (ICD).5

Cellular stressors that are associated with 
ICD encompass (but are not limited to): (1) 
obligate intracellular pathogens including 
multiple bacterial and viral species6–8; (2) 
therapeutic oncolytic viruses9–16; (3) various 
molecules with oncolytic potential17–19 ; 
(4) conventional chemotherapeutics such 
as numerous anthracyclines (ie, doxoru-
bicin, epirubicin, idarubicin and mitox-
antrone), some (but importantly not all) 
DNA- damaging agents (ie, cyclophospha-
mide and oxaliplatin, but not cisplatin), 
poly- A- ribose polymerase (PARP) inhibitors, 
mitotic poisons (ie, docetaxel and patupi-
lone) and proteasomal inhibitors (ie, borte-
zomib and carfilzomib)20–25; (5) epigenetic 
modifiers including DNA methyltransferase, 
histone deacetylase (HDAC) and bromo-
domain inhibitors26–30; (6) targeted anti-
cancer agents such as the tyrosine kinase 
inhibitor crizotinib, the epidermal growth 
factor receptor (EGFR)- specific monoclonal 
antibody cetuximab, the cyclin- dependent 
kinase (CDK) inhibitor dinaciclib and the 
Bruton tyrosine kinase (BTK) inhibitor 
ibrutinib31–33; (7) other chemicals including 
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the ubiquitin- specific peptidase inhibitor spautin-1, the 
antibiotic bleomycin, the protein phosphatase- 2A inhib-
itor LB-100, the Chinese herbal medicine component 
shikonin and capsaicin34–38 and (8) numerous physical 
interventions, encompassing various forms of ionizing 
radiation, extracorporeal photochemotherapy, hypericin- 
based photodynamic therapy (PDT), near‐infrared 
photoimmunotherapy, high hydrostatic pressure, severe 
cytotoxic heat shock, nanopulse stimulation and electro-
hyperthermia.39–49 Importantly, dose and administration 
schedules have a major impact on the ability of many of 
these agents to initiate productive ICD.50–52

The aforementioned ICD inducers have been instru-
mental not only for identifying the molecular machinery 
that underlies the immunogenicity of some variants of 
RCD,5 but also for elucidating the pathophysiological 
and therapeutic implications of the process.53 Indeed, 
the ability of ICD to initiate adaptive immunity not only 
is critical for the optimal eradication of infectious patho-
gens,54 but also influences the cancer- immunity cycle by 
tipping the balance toward antitumor immunity.55 Consis-
tent with this notion, both pathogens and progressing 
tumors harness strategies that enable immunoevasion by 
avoiding ICD induction.5 Moreover, accumulating clin-
ical evidence demonstrates that numerous ICD inducers 
commonly employed in the management of cancer 
patients synergize with immunotherapy with immune 
checkpoint blockers (ICBs), as long as they do not 
compromise immunostimulatory signals or the activity of 
tumor- infiltrating lymphocytes.56 57

The morphological features displayed by dying cells 
and the molecular mechanisms that are mechanistically 
responsible for the cellular demise do not necessarily 
correlate with the immunogenicity of RCD.58 Thus, while 
specific instances of caspase 3 (CASP3)- dependent apop-
tosis and mixed lineage kinase domain- like pseudokinase 
(MLKL)- dependent necroptosis initiate adaptive immu-
nity in certain experimental settings,20 59 60 RCD accom-
panied by CASP3 or MLKL activation is not necessarily 
immunogenic.61–63 Moreover, while the perception of 
RCD as immunogenic has been etiologically attributed 
to the emission of specific signals from dying cells (see 
Definition of immunogenic cell death), the presence of such 
signals is not necessarily predictive of the ability of dying 
cells to drive adaptive immunity in vivo.34 64 Altogether, 
these observations highlight the importance of defining 
standardized experimental settings that enable the assess-
ment of ICD in the context of a robust conceptual frame-
work for the interpretation of results. Here, we provide 
a general overview of the factors that underpin the 
immunogenicity or RCD, and attempt to provide such a 
framework by formulating guidelines for the definition, 
detection and interpretation of ICD.

definition of ICd
The Nomenclature Committee on Cell Death has recently 
defined ICD as ‘a form of RCD that is sufficient to acti-
vate an adaptive immune response in immunocompetent 

syngeneic hosts’,1 which properly reflects the two major 
components of ICD as a process, that is, the cellular 
component and the host component. Importantly, the 
latter does not refer to potential defects of the host that 
prevent the initiation of adaptive immunity (eg, HLA 
mismatch, systemic immunodeficiency), but to features 
intrinsic to dying cells that render them immunogenic 
only in specific hosts. Indeed, the ability of RCD to drive 
adaptive immunity depends on two major parameters, 
neither of which is ultimately intrinsic to dying cells: anti-
genicity and adjuvanticity.

Antigenicity is conferred by the expression and presen-
tation of antigens that fail to induce clonal deletion in the 
context of central tolerance in a specific host, implying 
that the host contains naïve T cell clones that can recog-
nize such antigens.65 66 Thus, healthy cells are limited 
in their ability to drive ICD, as their antigens are typi-
cally expressed by the thymic epithelium during T cell 
development. As an exception, some naïve T cell clones 
expressing self- reactive low- affinity T cell receptors (TCRs) 
escape thymic selection, implying that such antigens may 
support ICD in the context of peripheral tolerance break-
down (see Sources of ICD antigenicity). Conversely, infected 
cells, as well as malignant cells, display sufficient antige-
nicity to drive immune responses, as they express a panel 
of antigenic epitopes for which naïve T cell clones are 
generally available. These antigenic determinants include 
neoepitopes that are highly immunogenic as they are not 
covered by central tolerance as well as (non- mutated) 
epitopes that may be immunogenic due to gaps in central 
tolerance and/or incomplete peripheral tolerance.67 
Adjuvanticity is provided by the spatiotemporally coor-
dinated release or exposure of danger signals that are 
necessary for the recruitment and maturation of antigen- 
presenting cells (APCs), which are cumulatively referred 
to as damage- associated molecular patterns (DAMPs).68 69 
Although most (if not all) cells contain DAMPs in levels 
that are sufficient to drive robust APC stimulation, the 
kinetics and intensity of their release are dictated by intra-
cellular responses driven by the initiating stressor.70–72 
This may explain why some cytotoxic agents can drive 
ICD while others are unable to, despite their similar RCD- 
inducing capability.23 73

Microenvironmental conditions also have a dramatic 
influence on the propensity of infected or neoplastic cells 
undergoing a potentially immunogenic variant of RCD 
to initiate adaptive immunity and/or be susceptible to 
CTL- dependent lysis, thus impacting both the priming 
and the effector phase of the immunological response. 
As an example, mouse cancer cells irradiated in vitro can 
be successfully employed to immunize immunocompe-
tent syngeneic mice against a subsequent challenge with 
living cells of the same type, demonstrating the elicitation 
of immunological memory.74 Conversely, in therapeutic 
settings, the immunosuppressive microenvironment that 
characterizes a majority of tumors can considerably limit 
ICD- driven immunity.75 76 Thus, irradiating a neoplastic 
lesion established in immunocompetent, syngeneic mice 
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Figure 1 Major factors dictating the immunogenicity of cell death. Cells undergoing regulated cell death (RCD) in response to 
stress can prime an adaptive immune response specific for dead cell- associated antigens provided that (1) those antigens are 
not perfectly covered by central tolerance, and (2) dying cells emit a panel of immunostimulatory damage- associated molecular 
patterns (DAMPs) and cytokines that, when delivered according to a precise spatiotemporal pattern, support the recruitment, 
phagocytic activity and maturation of antigen- presenting cells (APCs), de facto enabling them to engulf antigenic material, 
migrate to lymph nodes and prime a cytotoxic T lymphocyte (CTL)- dependent immune response. As they express tumor 
neoantigens (TNAs, which are not covered by central tolerance) and/or tumor- associated antigens (TAAs, for which central 
tolerance is leaky), cancer cells can undergo bona fide immunogenic cell death (ICD) in response to select stimuli, including (but 
not limited to) some chemotherapeutic agents commonly employed in the clinic, as well as radiation therapy. However, the TME 
is generally characterized by an immunosuppressive profile that may prevent either the initiation or the execution of ICD- driven 
anticancer immunity. Thus, the ultimate ability of RCD to drive adaptive immunity does not depend only on the initiating stimulus 
and the dying cell, but also on features that are intrinsic to the host. IFNAR, interferon- alpha/beta receptor; PRR, pattern 
recognition receptor; TREG, regulatory T; TME, tumor microenvironment.

generally fails to generate a CTL- dependent immune 
response of sufficient strength to eradicate a distant, non- 
irradiated lesion, unless additional immunostimulatory 
molecules are provided.77–79

Taken together, these observations suggest that while 
the adjuvanticity of RCD depends on dying cells and 
the capability of the initiating stressor to elicit danger 
signaling, its immunogenicity ultimately depends on 
dying cells and the host, which also determines the 
propensity of dying cells to drive adaptive immunity at the 
microenvironmental level (figure 1).

sources of ICd antigenicity
Infection by pathogenic microbes is an obvious source 
of antigenic determinants, as microbial proteins are not 
covered by central tolerance and hence their epitopes are 
highly antigenic.80 81 Together with the ability of conserved 
microbial products cumulatively referred to as microbe- 
associated molecular patterns (MAMPs) to deliver potent 
immunostimulatory signals, this explains why RCD driven 
by intracellular pathogens is highly immunogenic.82–84 
The same generally does not apply to healthy syngeneic 

cells, as thymic and peripheral tolerance result in the 
deletion or functional inactivation of self- reactive T cell 
clones from the mature host T cell repertoire,85 although 
some naïve T cell clones expressing self- reactive low- 
affinity TCRs can escape thymic selection and hence drive 
(especially in the context of lost peripheral tolerance) 
autoimmune reactions.86

There are at least two exceptions to this principle, which 
may underlie the ability of healthy cells to undergo ICD. 
First, the genome of normal cells contains a significant 
number of endogenous retroviruses, which are generally 
latent (ie, not transcribed) in physiological conditions.87 88 
In response to some cellular stressors, however, endog-
enous retroviruses can become activated and/or retro-
viral genes can be expressed, resulting in the synthesis of 
potentially antigenic proteins.89 Second, antigenic deter-
minants can be generated by enzymatic or non- enzymatic 
post- translational modifications (PTMs) that alter protein 
structure, encompassing (but perhaps not limited to) 
phosphorylation, acetylation, glycosylation, citrullina-
tion, nitration/nitrosylation, glycation, oxidation and 
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ubiquitination.90 Moreover, the antigenic peptide reper-
toire can be boosted by alterations in the activation of 
reticular aminopeptidases such as endoplasmic reticulum 
aminopeptidase 1 (ERAP1) and ERAP2.91 Importantly, 
the signal transduction cascades that regulate enzymatic 
PTMs are sensitive to a variety of microenvironmental 
signals, and not necessarily activated in a similar manner 
in the periphery and the thymic epithelium during clonal 
T cell selection. This implies that some PTM- containing 
epitopes may not be covered by central tolerance. Along 
similar lines, microenvironmental conditions that impose 
non- enzymatic PTMs (eg, an oxidative extracellular 
milieu) are common at sites of inflammation, ischemia or 
malignant progression, but not in the thymus.92 As a note, 
such stressful conditions can also lead to the generation of 
antigenic peptides derived from ‘cryptic’ translation (ie, 
from untranslated mRNAs).93 In support of the ability of 
healthy cells to drive ICD, at least in some settings, PTM- 
dependent epitopes have been attributed pathogenic 
value in some autoimmune disorders including diabetes 
and rheumatoid arthritis.94 95

The majority of human tumors are not driven by active 
viral infections. Nonetheless, like pathogen- infected 
dying cells, malignant cells can display a high antige-
nicity, largely reflecting the elevated mutational rate 
that frequently accompanies malignant transformation 
and disease progression in the context of immunoeva-
sion.96 97 In a fraction of cases, such mutations prime 
immune responses as they affect coding regions of the 
genome. This is the case of non- synonymous point muta-
tions (ie, mutations altering the amino acid sequence) as 
well as frameshift mutations caused by small insertions 
and deletions (indels) in proteins that are expressed 
and properly processed by the antigen presentation 
machinery, culminating in the exposure of tumor neoan-
tigens (TNAs). TNAs exposed on the surface of malignant 
cells may have poor structural homology to self epitopes, 
hence partially resemble microbial epitopes and efficiently 
prime de novo immune responses.75 98–101 Some self anti-
gens expressed by cancer cells can also initiate antitumor 
immunity. Because they are not unique to neoplastic 
tissues, but are also expressed by healthy or immunopriv-
ileged tissues, such antigens have been designated tumor- 
associated antigens (TAAs). TAAs that have been shown 
to drive anticancer immunity, especially in the setting 
of therapeutic anticancer vaccination,102 103 encompass: 
(1) tissue differentiation antigens such as CD19, CD20, 
premelanosome protein (PMEL, best known as gp100), 
and melan- A (MLANA, best known as MART-1), as well 
as (2) ectopically expressed proteins such as carcinoem-
bryonic antigens (CEAs), cancer/testis antigens, as well 
as multiple members of the MAGE and SSX protein 
families.104–106 Central tolerance against these antigens is 
leaky (implying that naïve T cell clone that express low- 
affinity TCRs are available) and peripheral tolerance can 
be overcome in the context of robust adjuvanticity.106–108 
Thus, although TAAs are generally weaker at eliciting 
anticancer immunity as compared with TNAs,109 they can 

be relevant for ICD- driven immunity in tumors with low 
TNA load. Of note, the harsh conditions that characterize 
the tumor microenvironment (TME) and the extensive 
rewiring of signal transduction that characterizes malig-
nant cells suggest that PTMs may play a predominant role 
in determining the antigenicity of cancer cells, a possi-
bility that remains largely unexplored.110

Several factors influence the antigenicity of tumors 
evolving in immunocompetent, syngeneic hosts. First, the 
mutational burden (and thus the potential to generate 
TNAs) is heterogeneous across and within tumors, 
ranging from ~1 mutation/Mb in hematologic malig-
nancies to >10 mutations/Mb in solid tumors with a 
hypermutant phenotype.111–113 Mutational burden and 
the TNA landscape also evolve over space (ie, in distinct 
tumor areas) and time (ie, at distinct stages of malig-
nant progression) under the pressure of ongoing immu-
nity and in response to increased genomic instability as 
well as chemotherapeutic or radiotherapeutic interven-
tions,97 114 115 resulting in tumors or tumor areas with 
distinct antigenicity and hence differential ability to drive 
adaptive immune responses on RCD.116 That said, while 
mutational burden has been associated with the sensi-
tivity of multiple tumors to ICBs117–119 and tumors with 
extensive immune infiltration (which often are genet-
ically unstable) are characterized by a transcriptional 
signature of ICD,120 formal demonstration that muta-
tional burden also influences the antineoplastic effects of 
ICD- based therapeutic regimens in the clinic is lacking. 
Preclinical evidence suggests that even cells with reduced 
mutational load can drive adaptive immunity,121 although 
the choice of the experimental model is expected to 
have a major role in this context (see Detection of ICD 
in cancer). Second, the antigenicity of malignant cells is 
directly related to antigen presentation, implying that 
genetic and epigenetic defects that compromise it can 
be beneficial for cancer cells.122 123 These defects, which 
are common in tumors with high mutational burden and 
robust T cell infiltration,124 125 include: (1) antigen loss 
and subclonal evolution, that is, the preferential expan-
sion of cancer cell clones that do not express an antigen 
subjected to active immunity114 and (2) impaired antigen 
presentation as a consequence of mutations, deregulated 
expression, or structural alterations of key components of 
the antigen- presenting machinery including MHC Class 
I molecules, beta-2- microglobulin (B2M), transporter 1, 
ATP binding cassette subfamily B member (TAP1), TAP2 
and proteasomal subunits.125 126

Of note, while the majority of ICD inducers are believed 
to have little impact on antigenicity and to operate by 
driving the correct spatiotemporal emission of DAMPs in 
the context of cell death (see Sources of ICD adjuvanticity), 
at least some ICD- triggering regimens may also boost anti-
genicity. This applies to potentially mutagenic agents, and 
to interventions that drive the reactivation of endogenous 
retroviruses and/or induce the expression of mutated 
genes or TAAs, such as CDK4/CDK6 inhibitors,127 
ionizing radiation,79 128 DNA damage response (DDR) 
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inhibitors,129 130 oncolytic viruses131 or HDAC inhibitors 
and other epigenetic regulators.132–134 Irrespective of this 
possibility, the ability of RCD to drive adaptive immunity 
intimately depends on the antigenicity of dying cells with 
respect to the availability and the functional status of the 
mature TCR repertoire of the host.

sources of ICd adjuvanticity
ICD driven by microbial pathogens is associated with 
arguably the most potent adjuvant signals for mammalian 
organisms, MAMPs. MAMPs encompass a variety of micro-
bial products that operate both within infected cells and 
in their microenvironment to drive the recruitment and 
maturation of APCs, culminating with antigen (cross- )
presentation to naïve T cells. MAMPs include microbial 
nucleic acid species (eg, viral single- stranded or double- 
stranded RNA or DNA, bacterial CpG- rich DNA) as well as 
structural components (eg, lipopolysaccharide, peptido-
glycans, flagellin), and mostly mediate immunostimula-
tory effects via pattern recognition receptors (PRRs).82 83 
The latter encompass numerous Toll- like receptors (TLRs) 
expressed on the cell surface and in endosomal compart-
ments,135–138 as well as (1) cyclic GMP- AMP synthase 
(CGAS), a sensor of cytosolic double- stranded DNA 
(dsDNA)139; (2) RIG- I- like receptors (RLRs), a group of 
RNA- specific PRRs named after DExD/H- box helicase 58 
(DDX58, best known as RIG- I)140 141; (3) NOD- like recep-
tors (NLRs), a family of PRRs with broad ligand specificity 
named after a common nucleotide- binding oligomeriza-
tion domain (NOD)142 143; (4) Z- DNA binding protein 1 
(ZBP1), a nucleic acid sensor also known as DAI whose 
precise mechanism of activation remains unknown144; 
(5) heterogeneous nuclear ribonucleoprotein A2/
B1 (HNRNPA2B1), a sensor of viral nuclear DNA and 
N6- methyladenosine- bearing RNAs.145 146 PRRs drive the 
production of numerous immunostimulatory that are key 
for pathogen control by the immune system.147

The same PRRs activated by MAMPs are also involved 
in the adjuvanticity of ICD induced in cancer cells 
by non- microbial stimuli.68 148 Thus, malignant cells 
exposed to a potentially immunogenic RCD inducer emit 
numerous DAMPs and cytokines that have been mecha-
nistically linked to the initiation of adaptive immunity in 
preclinical models (table 1). These immunostimulatory 
molecules include (but most likely are not limited to): 
ATP,149 150 cellular nucleic acids,151 152 the non- histone, 
nuclear DNA- binding protein high mobility group box 1 
(HMGB1),153–156 the member of the annexin superfamily 
annexin A1 (ANXA1),157 cytokines like type I interferon 
(IFN), C- C motif chemokine ligand 2 (CCL2), C- X- C 
motif chemokine ligand 1 (CXCL1) and CXCL10,151 158 159 
ER chaperones like calreticulin (CALR), protein disul-
fide isomerase family A member 3 (PDIA3, also known as 
ERp57), heat shock protein family A (Hsp70) member 1A 
(HSPA1A, best known as HSP70), Hsp90 alpha family class 
A member 1 (HSP90AA1, best known as HSP90),21 22 160 
cytosolic components like F- actin,161 and other mitochon-
drial products like DNA, reactive oxygen species (ROS), 

cardiolipin and transcription factor A, mitochondrial 
(TFAM).36 162–164 The major roles of ICD- associated DAMPs 
and cytokines are to: (1) enable the recruitment of APCs 
or their precursors to sites of RCD (eg, ATP)149 150 165, (2) 
spatially guide the interaction between APCs and dying 
cells (eg, ANXA1)157, (3) favor the phagocytosis of dying 
cells or their corpses (eg, CALR, ERp57, HSP70, HSP90, 
F- actin)21 22 160 161, (4) promote the maturation of APCs 
and their capacity to effect cross- presentation (eg, ATP, 
HMGB1, type I IFN and TFAM),149 153 166–168 and (5) 
facilitate the recruitment of T cells (eg, CCL2, CXCL1 
and CXCL10).151 158 Of note, some emitted DAMPs are 
immunosuppressive (eg, adenosine),169 while others can 
switch to anti- inflammatory depending on the engaged 
PRR (eg, HMGB1), biochemical modifications such as 
oxidation (eg, HMGB1) or chronic release (eg, type I 
IFN).53 70 170 Indeed, while acute, robust inflammatory 
responses such as those driven by ICD ultimately engage 
anticancer immunity, indolent, chronic inflammation has 
consistently been associated with immunoevasion and 
tumor progression.171 Of note, the emission of DAMPs by 
dying cells occurs in the context of failing intracellular 
responses to stress, which relay danger signals to the rest 
of the organism for the preservation of systemic homeo-
stasis.172 This implies that defects in multiple mechanisms 
that support cellular adaptation to stress may favor cell 
death, but at the same time may compromise the ability of 
dying cells to initiate adaptive immunity as a consequence 
of limited adjuvanticity.

Macroautophagy (herein referred to as autophagy) is 
a cytoprotective lysosomal pathway for the degradation 
of superfluous or potentially dangerous cytosolic mate-
rial and organelles.173–176 Robust evidence indicates that 
autophagy is required for the preservation of lysosomal 
ATP stores in the course of most (but not all) variants of 
ICD.149 166 As a consequence of cellular blebbing, which 
is mediated by lysosomal- associated membrane protein 1 
(LAMP1) and pannexin 1 (PANX1), ATP is released into 
the extracellular space.165 177 As an alternative, the ICD- 
associated release of ATP can occur through anterograde 
ER- to- Golgi transport.178 Extracellular ATP exerts its adju-
vanticity by binding to purinergic receptor P2Y2 (P2RY2), 
which favors the recruitment of APCs and their precur-
sors, and purinergic receptor P2X7 (P2RX7), which favors 
their activation and consequent release of the immuno-
stimulatory cytokine interleukin (IL)−1β.149 150 179

The integrated stress response (ISR), a multipronged 
molecular mechanism for the preservation of cellular 
homeostasis is required for the exposure of ER chaper-
ones on the cell surface during ICD.46 180–182 In partic-
ular, ER stress induced by anthracyclines stimulates the 
inactivating phosphorylation of eukaryotic translation 
initiation factor 2 subunit alpha (EIF2S1, best known as 
eIF2α) by eukaryotic translation initiation factor 2 alpha 
kinase 3 (EIF2AK3, best known as PERK),183 culminating 
in the CASP8- and B cell receptor associated protein 31 
(BCAP31)- dependent translocation of ER chaperones to 
the outer leaflet of the plasma membrane.160 178 180 For 
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Table 1 Major immunostimulatory DAMPs and cytokines mechanistically linked to ICD in cancer

Factor Class Effect
Main 
receptor(s) Ref.

ANXA1 Surface protein Directs APCs to dying cells FPR1 157

ATP Nucleotide Promotes the recruitment, maturation and cross- presentation 
activity of APCs

P2RX7
P2RY2

149 150

CALR ER chaperone Promotes the uptake of dying cells and type I IFN secretion 
by APCs

LRP1 21 22 160 178 191

CCL2 Cytokine Promotes T cell and neutrophil recruitment CCR2 151 159

CXCL1 Cytokine Promotes T cell and neutrophil recruitment CXCR2 151 159

CXCL10 Cytokine Promotes T cell and neutrophil recruitment CXCR3 151 158 159

Cytosolic RNA Nucleic acid Promotes the secretion of type I IFN and other 
proinflammatory factors

MDA5
RIG- I
TLR3

152

Cytosolic DNA Nucleic acid Promotes the secretion of type I IFN and other 
proinflammatory factors

AIM2
CGAS
ZBP1

162 164

ERp57 ER chaperone Promotes the uptake of dying cells by APCs LRP1 (?) 160

Extracellular DNA Nucleic acid Promotes the recruitment and activation of neutrophils TLR9 151 163

F- actin Cytoskeletal 
component

Promotes the uptake of dying cells by APCs CLEC9A 161

HMGB1 Nuclear DNA- binding 
protein

Promotes the maturation and cross- presentation activity of 
APCs

AGER
TLR2
TLR4

153 154

HSP70 ER chaperone Favors the uptake of dying cells by APCs LRP1 21

HSP90 ER chaperone Favors the uptake of dying cells by APCs LRP1 21

TFAM Transcription factor Promotes APC maturation and recruitment AGER 36

Type I IFN Cytokine Promotes APC maturation, cross- presentation, and T cell 
recruitment

IFNARs 158 194 195

AGER, advanced glycosylation end- product specific receptor; AIM2, absent in melanoma 2 ; ANXA1, annexin A1; APC, antigen- presenting cell; 
CALR, calreticulin; CCL, C- C motif chemokine ligand 2; CGAS, cyclic GMP- AMP synthase; CLEC9A, C- type lectin domain containing 9A; CXCL1, 
C- X- C motif chemokine ligand 1; CXCL10, C- X- C motif chemokine ligand 10; CXCR2, C- X- C motif chemokine receptor 2; CXCR3, C- X- C motif 
chemokine receptor 3; DAMP, danger- associated molecular pattern; ER, endoplasmic reticulum; FPR1, formyl peptide receptor 1; HMGB1, high 
mobility group box 1; HSP, heat shock protein; ICD, immunogenic cell death; IFN, interferon; IFNAR, interferon- alpha/beta receptor; LRP1, LDL 
receptor- related protein 1; P2RY2, purinergic receptor P2Y2; P2X7, purinergic receptor P2X 7; TFAM, transcription factor A, mitochondrial; TLR2, 
Toll- like receptor 2; TLR3, toll like receptor 3 ; TLR4, toll like receptor 4; TLR9, toll like receptor 9; ZBP1, Z- DNA binding protein 1.

most ICD inducers, the entire process also relies on antero-
grade ER- to- Golgi transport mediated by vesicle- associated 
membrane protein 1 (VAMP1) and synaptosomal- 
associated protein 25 (SNAP25)53 180 184 and requires the 
concomitant production of ROS.71 Of note, the ICD- 
associated exposure of some ER chaperones (notably, 
CALR) on the cell surface appears to be regulated by 
C- X- C motif chemokine ligand 8 (CXCL8),184 ER Ca2+ 
levels,185 as well as CASP2, long non- coding RNAs (eg, 
ncRNA- RB1 and miR- 27a), and plasma membrane inte-
grins, at least in some settings.186–189 Surface- exposed 
CALR (and other ER chaperons) promotes the uptake 
of dying cells or their corpses by APCs, at least in some 
settings on interaction with LDL receptor related protein 
1 (LRP1).178 190 Moreover, CALR exposure appears to 
drive type I IFN secretion by APCs,191 192 which is also 
expected to contribute to the immunogenicity of RCD.

The mechanisms for the preservation of cellular 
homeostasis in response to infection are also intimately 
involved in the adjuvanticity of ICD, even when the latter 

is not driven by microbes.193 Indeed, multiple nucleic 
acids of endogenous derivation can be detected by PRRs 
to initiate danger signalling, generally based on ectopic 
localization or structural modifications that arise during 
stress responses.135 Thus, chemotherapy- driven ICD 
involves the activation of TLR3 by endogenous RNA 
species, resulting in type I IFN secretion and the conse-
quent initiation of an autocrine loop that culminates 
with CXCL10 release.158 Along similar lines, cancer cells 
succumb to ionizing radiation as they produce type I 
IFN downstream of CGAS signalling driven by cytosolic 
dsDNA.194 195 By binding to its cognate receptor, type I 
IFN mediates robust immunostimulatory effects on both 
APCs and effector cells.196 It also triggers the production 
of IFN- stimulated genes (ISGs) like CXCL10. CXCL10 
then acts as a chemoattractant for T cells and, together 
with CXCL1 and CCL2, for neutrophils, which (at least 
in some settings) appear to contribute to the ICD- driven 
killing of residual cancer cells in an antigen- independent 
fashion.151 158 Of note, cancer cell- derived nucleic acids 
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can also mediate immunostimulatory effects by driving 
type I IFN secretion in APCs, generally on the transfer 
of nucleic acid- containing extracellular microvesicles 
between these two cellular compartments.195 197

The precise stress responses involved in the release 
of other ICD- associated DAMPs including ANXA1 and 
HMGB1 remain to be fully elucidated. Irrespective of this 
unknown, ANXA1 is known to spatially direct APCs to 
dying cells on interaction with formyl peptide receptor 
1 (FPR1),157 while HMGB1 can mediate robust immuno-
stimulatory functions by signaling via advanced glycosyla-
tion end- product specific receptor (AGER, also known as 
RAGE) and TLR4,153 154 167 198–200 an activity that appears 
to depend on oxidation status.201 202 Moreover, it has 
become clear that the molecular machinery involved in 
ICD- associated DAMP emission exhibits some degree 
of variation depending on ICD inducer and cell type. 
Thus, CALR exposure and ATP secretion are required 
for the full- blown immunogenicity of cancer cells 
succumbing to hypericin- based PDT, but this can occur 
independently of eIF2α phosphorylation and autophagy 
activation.178 203 Likewise, neoplastic cells succumbing to 
necroptosis- driven ICD release ATP and HMGB1, but 
CALR is exposed at low levels on the plasma membrane 
and ISR activation appears to be dispensable.59 204

The critical role of DAMP signaling in the immuno-
genicity of RCD has been established by a plethora of 
complementary mechanistic experiments aimed at: 
(1) the pharmacological or genetic inhibition of the 
signaling pathways involved in DAMP release (eg, with 
cancer cells expressing a non- phosphorylatable variant of 
eIF2α)180; (2) the artificial activation of stress responses 
responsible for DAMP emission (eg, with ER stressors in 
neoplastic cells undergoing a variant of RCD otherwise 
not associated with activation of the ISR)205 206; (3) the 
knockout or knockdown of DAMP- coding genes (eg, 
with cancer cells depleted of HMGB1 by RNA interfer-
ence)23 153; (4) DAMP neutralization/blockade (eg, with 
cells overexpressing an intracellular enzyme degrading 
cytosolic dsDNA)194; (5) the exogenous complementa-
tion of DAMPs (eg, with recombinant CALR adminis-
tered to cells undergoing RCD in the absence of CALR 
exposure)22 180 207 208; (6) the upregulation of antago-
nistic processes (eg, with cancer cells overexpressing the 
antiphagocytic molecule CD47)209 210; (7) the blockade 
of DAMP receptors (eg, with monoclonal antibodies 
specific for type I IFN receptors)158 and (8) the knockout 
or knockdown of genes encoding for DAMP receptors in 
the host (eg, with Fpr1-/- mice).157 Several lines of clinical 
evidence also suggest that proficient danger signaling 
is critical for cancer patients to obtain clinical benefits 
from ICD- inducing therapies.211 These findings gener-
ally relate to the prognostic or predictive value of (1) 
activation of stress responses impinging on DAMP emis-
sion in cancer cells (eg, eIF2α phosphorylation in asso-
ciation with high CALR levels in biopsies from patients 
with non- small cell lung cancer)212; (2) the expression 
levels of specific DAMPs (eg, HMGB1 levels in biopsies 

from patients with breast cancer subjected to adjuvant 
anthracycline- based chemotherapy)213 214; (3) DAMP 
emission by cancer cells (eg, CALR exposure on blasts 
in patients with acute myeloid leukemia)215 216; (4) actual 
danger signaling in the TME (eg, gene signatures of type 
I IFN signaling in subjects with breast cancer)217; (5) loss- 
of- function polymorphisms in genes encoding DAMP 
receptors (eg, P2R×7, TLR4 and FPR1 polymorphisms 
in patients with breast carcinoma receiving neoadjuvant 
anthracyclines)23 150 153 157 and (6) the expression levels 
of DAMP antagonists (eg, CD47 expression on cancer 
cells in patients with acute myeloid leukemia, esophageal 
squamous cell carcinoma and ovarian clear cell carci-
noma).218–220 These are only a few examples corrobo-
rating the relevance of DAMP signaling for RCD to be 
sensed as immunogenic in patients.

Microenvironmental factors influencing ICd
Although some tissues respond to pathogenic infection 
more robustly than others (reflecting the differential 
abundance of tissue- resident APCs), cells succumbing 
to microbial infection generally drive adaptive immu-
nity irrespective of anatomical location.221 Conversely, 
the microenvironment of dying cancer cells is a major 
determinant of their ability to initiate adaptive immune 
responses, even in the presence of sufficient antigenicity 
and adjuvanticity,5 222 and this has major implications for 
the choice of experimental models for the assessment of 
ICD in vivo (see In vivo models).

There are several mechanisms whereby the microenvi-
ronment of developing tumors can antagonize the initi-
ation or execution of ICD, largely reflecting the ability 
of various neoplasms to establish peripheral tolerance. 
So- called ‘cold’ and ‘excluded’ tumors are poorly infil-
trated by immune cells including APCs and their precur-
sors at baseline, implying that the likelihood for dying 
cancer cells and their corpses to be productively processed 
and drive cross- priming is reduced.223 224 Priming is also 
limited by coinhibitory receptors expressed by tumor- 
infiltrating T cells including CTL- associated protein 
4 (CTLA4) and hepatitis A virus cellular receptor 2 
(HAVCR2, best known as TIM-3), a glycoprotein that 
binds to HMGB1 as well as the ‘eat me’ signal phosphati-
dylserine on the surface of dying cells.152 225

Moreover, the activity of APCs that infiltrate malig-
nant lesions is generally inhibited by immunosuppres-
sive cytokines including (but not limited to) IL-10 and 
transforming growth factor beta 1 (TGFB1).226 227 These 
bioactive factors are abundantly produced in response 
to hypoxia and during chronic inflammation, and are 
robustly associated with immunoevasion and tumor 
progression.228 IL-10 and TGFB1 are secreted by cancer 
cells and by immunosuppressive immune cells actively 
recruited to the TME, such as CD4+CD25+FOXP3+ regula-
tory T (TREG) cells, M2- polarized tumor- associated macro-
phages (TAMs), and/or myeloid- derived suppressor cells 
(MDSCs).229–231 Importantly, these immune cell popula-
tions express high levels of ectonucleoside triphosphate 
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diphosphohydrolase 1 (ENTPD1, best known as 
CD39) and 5'-nucleotidase ecto (NT5E, best known as 
CD73),232–234 two enzymes that cooperate to convert extra-
cellular ATP into adenosine, which also mediates robust 
immunosuppressive effects.235 Thus, TREG cells, M2- polar-
ized TAMs and MDSCs also have direct ICD antagonizing 
effects.

The redox status of the TME and individual DAMPs or 
their receptors may also affect the ability of RCD to drive 
adaptive anticancer immunity. For example, the release of 
oxidized HMGB1 by cancer cells undergoing pyroptosis, 
a gasdermin- dependent form of RCD generally associated 
with inflammasome activation,1 limits anticancer immu-
nity as it favors the expression of coinhibitory ligands.236 
In contrast, oxidized mitochondrial DNA favors inflam-
masome activation and hence the secretion of immuno-
stimulatory factors such as IL-1β in the TME,237 although 
the actual pathologic relevance of this pathway remains 
unknown.

Another major mechanism for progressing tumors 
to evade ICD at the execution phase (ie, the ability of 
ICD- driven CTLs to mediate cytotoxic effects) relies on 
immune exhaustion, that is, the establishment of dysfunc-
tion in tumor- infiltrating T cells.238–241 Coinhibitory 
receptors including programmed cell death 1 (PDCD1, 
also known as PD-1) are major (but not the sole) players 
in this setting. Indeed, activated CTLs have elevated 
metabolic demands, and both glucose and amino acids 
are generally limited in the TME.242 243 Moreover, several 
immunosuppressive metabolites that are enriched in 
the TME besides adenosine, such as kynurenine and 
lactate,244 245 and cytokine- dependent immunosuppres-
sion also operate on CTLs.224 246 247 Finally, vascular defects 
and the dense stromal reaction that characterize some 
tumors (eg, pancreatic cancer) can constitute a physical 
barrier to tumor infiltration by CTLs cross- primed in 
tumor- draining lymph nodes,248 249 de facto hampering 
the execution phase of ICD. Besides exemplifying the 
critical importance of local microenvironment for the 
immunogenicity of RCD, these observations explain why 
the same cancer cells receiving the same ICD inducers 
in vitro and in vivo may differ in their ability to initiate 
adaptive immunity.

Importantly, multiple ICD- inducing therapeutics as 
well as various therapies that do not promote ICD can 
mediate immunomodulatory effects on the TME by 
directly interacting with immune cell populations (rather 
than with cancer cells).73 Although such immunomodu-
latory effects are important for the ultimate efficacy of 
therapy in patients, they are conceptually and mechanis-
tically unrelated to ICD induction, and hence will not be 
discussed further here.

detection of ICd in cancer
Over the past two decades, an intensive wave of investi-
gation has unveiled major mechanistic and correlative 
aspects of ICD as a process culminating in the activation 
of adaptive immunity against dying cells. Experimental 

strategies conceived to assess the immunogenicity of RCD 
encompass: (1) the study of DAMP emission from (and 
activation of relevant stress responses in) dying cells; (2) 
biochemical and functional tests to assess the activation of 
APCs and their ability to mediate cross- priming, in vitro 
and (3) the ability of dying cells to initiate adaptive immu-
nity in vivo, in immunocompetent syngeneic hosts. Here, 
we will summarize current methods to assess ICD in onco-
logical settings.

In vitro assays with cancer cells
Robust experimental evidence indicates that the ability 
of RCD to promote adaptive immunity critically relies 
on a progressing (but not exhausted) CTL response.121 
Presumably, this reflects the need for the availability of one 
or more TNAs/TAAs above a specific threshold, coupled 
to the timely delivery of danger signals (which are likely 
to vary depending on RCD inducer and tumor cell type). 
Thus, while mouse cancer cells exposed to cardiac glyco-
sides release ICD- associated DAMPs, they are unable to 
initiate protective anticancer immunity once inoculated 
in immunocompetent syngeneic hosts as cytotoxicity is 
limited and tumors develop at the vaccination sites.250 
Similarly, repeated freeze- thawing causes rapid cell death 
coupled to massive TNA/TAA release, but mouse cancer 
cells subjected to this harsh procedure cannot be used 
to protect syngeneic immunocompetent hosts against a 
subsequent challenge with living cells of the same type, 
most likely due to suboptimal adjuvanticity.20 59 The cyto-
toxic response driven by ICD inducers has classically been 
assessed by terminal cell death biomarkers such as plasma 
membrane permeabilization, as well as by conventional 
biomarkers of apoptosis, including phosphatidylserine 
exposure, mitochondrial transmembrane potential dissi-
pation and initiator or effector caspase activation.148 The 
rationale and principles of these assays have been exten-
sively described by us and others,58 251 252 and hence will 
not be discussed further here. That said, the existence of 
ICD variants relying on the necroptotic machinery and/
or occurring independent of caspase activation1 59 61 iden-
tifies a need for tools to measure ICD induction that can 
accommodate all potentially relevant RCD pathways.

Intracellular responses to stress mechanistically 
involved in DAMP release have also been employed as 
surrogate ICD biomarkers. ISR activation has generally 
been monitored in its three reticular components by 
the assessment of eIF2α phosphorylation, X- box binding 
protein 1 (XBP1) splicing and activating transcription 
factor 6 (ATF6) nuclear translocation, in some instances 
along with heat shock protein family A (Hsp70) member 
5 (HSPA5, also known as GRP78) upregulation. These 
biomarkers are detected by immunoblotting, flow cytom-
etry, immunofluorescence microscopy, immunohisto-
chemistry and/or RT- PCR, using dedicated antibodies or 
probes.33 183 253 ICD- associated PRR activation in cancer 
cells has been classically measured by immunoblotting 
with antibodies specific for key phosphorylated trans-
ducers, such as phosphorylated IFN regulatory factor 
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3 (IRF3) downstream of CGAS signaling,254 255 or with 
transcription- based luminescent reporters.254 256–258 As 
an alternative approach, the ectopic accumulation of 
nucleic acids has been monitored, generally by immuno-
fluorescence microscopy with dedicated antibodies or by 
subcellular fractionation coupled to optional enzymatic 
digestion of nucleic acids and absorbance- based quan-
tification.158 256 Activation of autophagy in cells exposed 
to potential ICD inducers has largely been monitored by 
the concomitant assessment of microtubule associated 
protein 1 light chain 3 (MAP1LC3, best known as LC3) 
lipidation and degradation of an autophagic substrate 
such as sequestosome 1 (SQSTM1, also known as p62) 
by immunoblotting, in the context of appropriate control 
conditions.259 Autophagy is indeed a dynamic process and 
the mere analysis of LC3 lipidation in cells responding 
to stress conditions cannot be employed to discriminate 
between autophagy activation and inhibition.259

Cell surface exposure of ER chaperones as a surro-
gate biomarker of ICD can be determined by (1) 
flow cytometry in non- permeabilized early apop-
totic cells using specific antibodies or dedicated 
constructs (eg, CALR fused to the HaloTag) combined 
with vital dyes like 7- aminoactinomycin D (7- AAD), 
4′,6- diamidino-2- phenylindole (DAPI) or propidium 
iodide (PI), which enable the exclusion of dead cells 
from the analysis41 180 205 260; (2) fluorescence microscopy, 
in cells fixed with low concentration of paraformaldehyde 
and then immunostained with antibodies specific for ER 
chaperones21 32 43 160 261; (3) fluorescence microscopy 
or video microscopy, in cells constitutively expressing a 
construct in which specific the ER chaperone of choice 
is fused to GFP or another fluorescent tag33 205 250 262 and 
(4) immunoblotting, in cells previously subjected to cell 
surface protein biotinylation followed by streptavidin- 
mediated precipitation.160 263

Two main approaches have been harnessed to deter-
mine the release of ICD- associated soluble DAMPs and 
cytokine from dying cells: (1) DAMP/cytokine quantifi-
cation in culture supernatants and (2) quantification of 
residual DAMPs/cytokines in the intracellular microenvi-
ronment. Of note, while the former approach is univer-
sally applicable, the latter cannot be employed for DAMPs 
and cytokines that are actively synthesized before release, 
such as type I IFN and CXCL10.148 Thus, extracellular 
and intracellular ATP can be quantified with commercial 
luminescence- based assays on the culture supernatants 
and cell lysates, respectively.149 150 178 264 Extracellular ATP 
and its degradation products (ADP, AMP and adenosine) 
can also be quantified by targeted mass spectrometry,149 
while its intracellular counterpart can be monitored by 
flow cytometry or fluorescence microscopy on staining 
with the ATP- specific dye quinacrine or implementation 
of ATP- specific fluorescence resonance energy transfer 
(FRET)- based reporters.165 265 Finally, ANXA1, HMGB1, 
type I IFN and CXCL10 secretion by cells undergoing 
RCD have been classically monitored by commercial 
ELISA or immunoblotting on culture supernatants or cell 

lysates.32 151 153 157 158 266 Moreover, a fluorescent version of 
HGMB1 is available that enables the assessment of HMGB1 
release by fluorescence microscopy or video microscopy, 
as a function of residual cell fluorescence.33 42 250 267 Of 
note, while RT- PCR is commonly employed to monitor 
type I IFN and CXCL10,158 268 this approach de facto 
measures PRR signaling, as transcription is not neces-
sarily coupled with translation and secretion.

In vitro assays with immune cells
While intracellular responses to stress and DAMP emis-
sion can be equally monitored in mouse and human 
tumor models, in vivo studies can currently be performed 
only in the former (see In vivo models). To partially circum-
vent this issue and enable a functional assessment of the 
immunogenicity of RCD in both the mouse and human 
system, the field has borrowed multiple classical assays 
from immunology. In general, these experiments aim at 
evaluating whether dying cancer cells can stimulate the 
ability of APCs to optimally cross- prime CTLs and hence 
initiate an adaptive immune response.

In particular, human or mouse APCs exposed to human 
or mouse dying cancer cells, respectively, are often 
investigated for: (1) their ability to engulf dying cells or 
their corpses; (2) their maturation status and migratory 
capacity and (3) their ability to cross- present antigenic 
material to CTLs. Phagocytosis is often assessed by cocul-
turing APCs or their precursors and dying cancer cells on 
individual prelabeling of both compartments with distinct 
non- toxic fluorescent dyes that remain in the cytoplasm, 
such as carboxyfluorescein succinimidyl ester (CFSE) 
or PKH26, followed by fluorescence microscopy or flow 
cytometry.32 269 270 As an alternative, only cancer cells are 
prelabeled, and phagocytosis is monitored on staining 
the coculture with monoclonal antibodies specific for 
the APC of choice.264 266 Moreover, apoptotic cell uptake 
has been measured by injecting pre- labeled dying mouse 
cancer cells intravenous, followed by splenocyte isola-
tion and flow cytometry.268 270 The maturation status of 
APCs has been classically measured by flow cytometry, 
on staining of cell cocultures with antibodies specific 
for MHC class II molecules and costimulatory molecules 
including CD80, CD83 and CD86 (which are all upreg-
ulated during maturation).21 43 263 271 As an alternative 
or complementary approach, functional maturation has 
been monitored by the detection of cytokines secreted in 
culture supernatants by APCs acquiring an immunostim-
ulatory phenotype, including (but not limited to) IL-1β, 
IL-6, IL-12 and IL-23.41 150 263 ELISA and flow cytom-
etry on intracellular staining with dedicated antibodies 
remain the techniques of choice for the latter strategy. 
That said, the intracellular assessment of IL-1β requires 
an antibody directed against the fully mature variant of 
the protein, as its precursor is not secreted.272 273 Migra-
tory capacity (which reflects the ability of dying cells to 
secrete chemotactic factors) has been evaluated by tran-
swell assays274 275 or by dedicated microfluidic devices that 
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allow for video microscopy (if cells are prelabeled with 
fluorescent dyes).157 276

The cross- priming potential of APCs exposed to 
cancer cells undergoing RCD has most frequently been 
assessed by coculturing them with syngeneic, naïve T 
cells, followed by the assessment of: (1) proliferative T 
cell response, generally by flow cytometry on previous 
labeling with CFSE271 277; (2) T cell activation status, most 
often by flow cytometry on staining with monoclonal anti-
bodies specific for surface proteins linked to activation 
(eg, CD69, LAMP1, PD-1)150 153 278; (3) T cell functional 
profile, either by flow cytometry on intracellular staining 
with monoclonal antibodies specific for effector mole-
cules such as IFN-γ, perforin 1 (PRF1) and granzyme B 
(GZMB) or by quantification of extracellular IFN-γ by 
ELISPOT.21 41 268 278 Finally, cytotoxic T cell functions 
on cross- priming can be tested by measuring the lysis of 
living cancer cells of the same type of those employed 
for APC pulsing46 279 280 or by analyzing the response to 
specific TAAs.281 282

In vivo models
Only a few models are currently available to investigate 
ICD in vivo (figure 2). The gold standard approach to 
assess the ability of dying cells to initiate adaptive immu-
nity involves vaccination assays with immunocompetent, 
syngeneic mice.148 In this context, mouse cancer cells 
are exposed to a potential ICD inducer in vitro and then 
administered as a vaccine s.c., in the absence of any immu-
nological adjuvant and on the removal of exogenous 
chemical entities (if any, such as the ICD inducer itself). 
One to two weeks later, mice are challenged s.c. with living 
cancer cells of the same type (at the minimal dose that 
is 100% effective at generating progressing lesions in 
naïve mice) and followed over 40–60 days for tumor inci-
dence and growth.20 22 153 178 208 Not only the percentage 
of tumor- free mice, but also the growth rate of tumors 
potentially developing despite a vaccine- induced adaptive 
immune response are usually employed as indicators of 
(at least some) degree of immunogenicity. Specificity is 
confirmed by re- challenging tumor- free mice at the end 
of the experiment with another syngeneic cancer cell 
line, which is expected to generate progressing neoplastic 
lesions in 100% of mice. Of note, vaccination can also 
be performed with APCs exposed to dying cancer cells in 
vitro or implemented in therapeutic (rather than prophy-
lactic) settings, that is, as a treatment of established 
tumors.157 283–285 Moreover, CD8+ T cells cross- primed in 
vitro by APCs exposed to cancer cells undergoing ICD 
have been employed in adoptive transfer experiments to 
treat tumors previously established with the living cancer 
cells of the same type.32 286 Importantly, comparing the 
efficacy of any RCD inducer against mouse cancer cells 
growing in immunocompetent, syngeneic versus immu-
nodeficient mice can provide hints on the ability of such 
intervention to drive ICD (in such case, therapeutic effi-
cacy will be limited in immunodeficient hosts). However, 
this latter experimental setting is intrinsically unsuitable 

to discriminate between ICD induction and ICD- unrelated 
immunostimulation (see Interpretation of ICD).

Three alternative approaches to assess ICD in vivo, in 
immunocompetent syngeneic systems, critically rely on 
the measurement of tumor growth at non- treated disease 
sites, which implies they can only be implemented with 
localized therapies (eg, focal ionizing radiation and 
intratumoral delivery of therapeutic agents that fail to 
reach active concentrations systemically)79 287–289 or when 
the non- treated site is biologically inaccessible to treat-
ment but accessible to CTLs (eg, brain metastases in a 
host receiving chemotherapeutics that do not cross the 
blood- brain barrier).290 Models of the so- called ‘abscopal 
response’, that is, the regression of an out- of- field lesion 
in patients receiving ionizing radiation to a distant disease 
site,291 have proven highly instrumental in this setting. 
Usually, immunocompetent mice are grafted with either 
(1) cancer cells to generate two slightly asynchronous 
lesions s.c., at anatomically distant sites or (2) metastasis- 
prone cancer cells to generate a palpable lesion s.c. and 
metastatic (lung) dissemination.79 288 292 In both scenarios, 
only one of the subcutaneous lesion(s) receives ionizing 
radiation (generally in the presence of an immunostimu-
latory molecule that has no single- agent systemic effect), 
and the response of non- irradiated lesion, metastatic 
load and overall survival are monitored as indicators of 
ICD induction coupled to activation of adaptive immu-
nity with systemic outreach.78 79 287 288 292 293 Mice rejecting 
irradiated and non- irradiated lesions can be rechal-
lenged 30–40 days after disease eradication with the same 
cancer cells employed originally to assess the durability 
of protection, as well as with syngeneic cancer cells of 
another type to monitor its specificity.49 292 293 Likewise, 
distinct cell types can be employed for the generation of 
primary and secondary lesions to verify that the in situ 
vaccination effect generated by ICD is antigen specific.294 
Finally, models of simultaneous intracranial and extracra-
nial disease have been harnessed to monitor the ability 
of systemic chemotherapeutic agents that are unable to 
penetrate the blood–brain barrier and focal ionizing radi-
ation to elicit anticancer immunity in the periphery.295 Of 
note, in these latter models, the presence of extracranial 
lesions increases the efficacy of immunotherapy against 
cranial neoplasms by stimulating CTL trafficking,296 
although the relevance of this phenomenon for ICD- 
driven immunity remains to be ascertained.

All these models are amenable to ex vivo studies aimed 
at: (1) the characterization of DAMPs released by cancer 
cells responding to stress in situ; (2) the immunological 
profiling of APCs and CTLs underlying the initiation and 
execution of anticancer immunity in vivo and (3) the 
identification of mechanistic vs correlative aspects of ICD 
elicited in vivo by the stressor(s) of choice (eg, with deple-
tion, blockage or neutralization strategies).79 287 288 293

Interpretation of ICd
Most of the assays that are currently available to estimate 
the propensity of RCD to drive adaptive immune responses 
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Figure 2 Current methods to assess ICD in vivo, in oncological settings. Current models to ascertain the ability of dying 
cancer cells to elicit an adaptive, tumor- specific immune response in vivo invariably rely on mouse neoplasms established in 
immunocompetent syngeneic hosts. In prophylactic models, mouse cancer cells succumbing in vitro to a potential inducer of 
immunogenic celldeath (ICD) are used as a vaccine, either as such, or on loading on immature, syngeneic dendritic cells (DCs). 
The ability of mice to reject (tumor incidence) or control (tumor growth) a rechallenge with living cancer cells of the same type 
inoculated 1–2 weeks later is monitored as a sign of protective anticancer immunity. In therapeutic settings, mouse tumors 
developing in immunocompetent syngeneic hosts are treated with autologous DCs preloaded with cancer cells exposed to 
a potential ICD inducer in vitro (generally in combination with immunological adjuvants), or with autologous CD8+ cytotoxic 
lymphocytes primed in vitro by the same DCs (generally in combination with IL-2 or other cytokines that support expansion in 
vivo). Tumor control and mouse survival are monitored as indicators of therapeutic anticancer immunity. In abscopal models, 
mouse cancer cells are harnessed to generate lesions at distant anatomical sites (either artificially, or exploiting the natural 
capacity of some cell lines to generate metastases), followed by treatment at only one disease site (generally in the context 
of otherwise inactive systemic immunostimulation). Tumor control at the non- treated disease site and mouse survival are 
monitored as signs of systemic anticancer immunity with therapeutic relevance. Finally, in intracranial/extracranial models, 
mouse cancer cells are employed to generate one intracranial and one extracranial tumor, only one of which receives treatment 
(generally, a systemic agent that cannot cross the blood–brain barrier [BBB] for extracranial lesion, or radiation therapy for 
intracranial lesions, in both cases in combination with otherwise inactive immunostimulants). As in abscopal models, tumor 
control at the non- treated disease site and mouse survival are monitored as indicators of therapeutic anticancer immunity 
with systemic outreach. In all these models, mice achieving systemic, long- term disease eradication are often rechallenged 
with cancer cells to monitor durability (with the same cancer cells employed for disease establishment) and specificity (with 
unrelated, but syngeneic cancer cells). ICD, immunogenic cell death; IL-2, interleukin 2.
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fail to take into proper consideration the complexity that 
is inherent to ICD, which (as detailed above) ultimately 
represents a highly contextual process that depends on 
(1) initiating stimulus, (2) responding cell and (3) the 
host (figure 1). In this context, the interpretation of ICD- 
related assays faces a number of challenges that should be 
always kept under consideration.

Surrogate biomarkers of ICD, such as the accumula-
tion of cytosolic DNA, the exposure of ER chaperones on 
the cell surface or the release of ATP and/or HMGB1 by 
dying cells, as well as biomarkers of the stress responses 
that underlie their emission, have been instrumental 
for the characterization of the key molecular players of 
process, and the identification of potential ICD inducers 
in large screening efforts.183 184 262 However, not all trig-
gers of ICD operate via the same molecular mecha-
nisms, as demonstrated by the ability of hypericin- based 
PDT to initiate anticancer immunity irrespective of the 
autophagic proficiency of malignant cells.203 Moreover, 
the emission of ICD- associated DAMPs according to 
the correct spatiotemporal pattern is required, but not 
sufficient, for APCs to initiate CTL- dependent immune 
responses against dying cells. Thus, cardiac glycosides 
trigger a multipronged stress response culminating with 
all major surrogate biomarkers of ICD, and yet cannot 
establish protective immunity in gold- standard vaccina-
tion assays.250 These observations suggest that the ability 
of any stressor to drive a variant of RCD associated with 
adaptive immunity cannot be extrapolated by in vitro 
assays focusing on cancer cells.

Although their scalability to screening applications is 
limited, immunological assays testing the ability of APCs 
primed with dying cells to engage in the sequential 
process leading to cross- priming (which is an absolute 
requirement for adaptive immunity in this setting) obvi-
ously offer a more precise assessment of the immunoge-
nicity of RCD. However, these assays are also inherently 
limited in that they are unable to assess two major prereq-
uisites for cross- priming: (1) the ability of APCs to physi-
cally reach sites of RCD and (2) the existence of naïve T 
cell clones specific for antigens expressed by dying cells, 
ultimately calling for validation with in vivo models.

Vaccination assays have been highly instrumental for 
the demonstration that syngeneic dying cells can drive 
adaptive immunity in the presence of adequate anti-
genicity and adjuvanticity.20 22 153 178 208 297 However, the 
use of tumor- naïve hosts enables a very high degree of 
sensitivity, which may not necessarily be advantageous if 
clinical applications are the ultimate goal. In this context, 
abscopal and intracranial/extracranial models may 
offer increased pathophysiological relevance, as (with 
the limitations described above) they mimic established 
metastatic disease in humans. However, these models are 
limited in that they can only measure systemic immunity 
to local therapies or agents that do not penetrate the 
blood–brain barrier.79 288 Moreover, largely reflecting the 
clinical scenario, eliciting systemic immunity with disease- 
eradicating potential in these models is challenging, and 

often requires the provision of additional immunostim-
ulatory signals that antagonize peripheral tolerance.77–79 
Such a limited sensitivity (although clinically relevant) 
may be detrimental at early stages of discovery when 
optimal ICD conditions are yet to be determined.

As a group, ICD- relevant in vivo models are affected by 
multiple issues including the fact that only murine systems 
can be investigated, and it cannot be excluded that the 
molecules and cell populations at play in the human 
setting may be different (at least to some degree).298 299 
Moreover, all current models for the detection of ICD 
in vivo rely on the establishment of primary lesions with 
murine cancer cell lines, which (1) have been immu-
noedited and acquired the ability to evade immunosur-
veillance in their original host (implying that they do 
not properly recapitulate primary oncogenesis), (2) have 
a relatively low and homogeneous mutational burden 
compared with human disease (and hence fail to recapit-
ulate the mutational and antigenic landscape of human 
tumors), (3) generally do not establish a complex stromal 
and endothelial architecture as a consequence of their 
elevated proliferation rate (which differs from human 
neoplasms) and (4) are implanted by injection, which 
per se may mediate at least some degree of immunostim-
ulation.300–303 Finally, the need for fully syngeneic settings 
(to prevent rejection based on HLA mismatch) restricts 
remarkably the spectrum of cell lines and rodent strains 
that can be harnessed for this purpose, with a predom-
inance of models based on the C57BL/6 or BALB/c 
background.304

Current efforts to circumvent, at least in part, these 
issues involve the use of orthotopic models (which offer 
improved microenvironmental features), transgene- 
driven models (which may offer a superior view on early 
oncogenesis) and carcinogen- driven models (which have 
superior heterogeneity).305–307 However, not all of these 
systems are compatible with vaccination and/or abscopal 
assays, implying that ICD induction can only be impre-
cisely addressed by complementing in vitro observations 
with therapeutic efficacy in immunocompetent vs immu-
nodeficient animals. Moreover, considerable efforts are 
being devoted to the development of humanized mice, 
which ultimately may enable the assessment of ICD 
induction in vivo with human cancer cells.308–310 Most 
often, these models involve the engraftment of func-
tional human immune cells from various sources into 
highly immunodeficient mice as a means to (partially and 
temporarily) reconstitute a functional human immune 
system.304 The major limitations of this approach (which 
vary in severity depending on the precise experimental 
protocol) include: (1) the ability of human immune cells 
to react against their mouse counterparts due to cross- 
species incompatibility and consequently graft- versus- 
host disease311 312; (2) the limited ability of (at least 
some) mouse cytokines to support immune cell recon-
stitution and function via human cytokine receptors313; 
(3) the hitherto poorly understood cross- talk between 
residual components of the mouse immune system (eg, 
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macrophages, granulocytes, endothelial cells) and recon-
stituted human cells309 and (4) the lack of thymic selec-
tion.314 Although refined strategies to circumvent these 
issues are being investigated, including the use of mice 
engineered to express human cytokines as well as the 
coimplantation of thymic fragments,313 315–320 this tech-
nology is hitherto immature for the assessment of ICD in 
the human system.

In summary, the assessment of ICD requires experi-
mental support from a variety of in vitro and in vivo assays 
that should cumulatively assess the ability of malignant 
cells undergoing RCD at the natural anatomical location 
to recruit APCs and stimulate them to initiate adaptive 
anticancer immunity.

Conclusions and perspectives
Accumulating evidence demonstrates that the initia-
tion of ICD is critical for the elimination of infectious 
pathogens and stands out as a major therapeutic goal for 
cancer therapy, especially in consideration of the current 
clinical success of ICBs.321 322 Indeed, the ability of several 
agents to drive ICD in oncological settings is hampered 
by the robust immunosuppressive circuitries established 
in the TME during the tumor- host coevolution, and ICBs 
may be instrumental for the inactivation of such circuit-
ries.56 77 79 323 324

There are three major obstacles precluding the full 
clinical potential of ICD inducers to be realized. First, 
most of these agents have been developed clinically based 
on the paradigm of maximum tolerated dose (MTD), 
and it is now clear that greater cytotoxicity does not 
necessarily coincide with optimal immunogenicity.194 
Moreover, the vast majority of clinically employed ICD 
inducers have been developed preclinically in immuno-
deficient models of disease, implying that little is known 
of their effects on the host immune system.299 302 Second, 
despite considerable progress over the past two decades, 
our understanding of RCD- associated DAMP signaling 
remains limited. In particular, limited attention has been 
dedicated to the study of immunosuppressive DAMPs, 
including (but not limited to) phosphatidylserine, pros-
taglandin E2, and adenosine, especially in the context of 
ICD.68 325–327 Intriguingly, MAMPs can also be immuno-
suppressive, and these are important for the establish-
ment of symbiosis.328 The impact of metabolism,329 the 
gut microbiota330 and the central nervous system331 on 
the release and activity of DAMPs also remains to be eluci-
dated. Finally, the key role of the host in ICD detection 
has been mostly studied from an adjuvanticity perspec-
tive, that is, linked to the capacity of the host to decode 
DAMP signaling via PRRs.5 Conversely, little is known 
about the TCR repertoire of hosts that respond to ICD 
with robust adaptive immunity versus hosts that do not, 
and about the impact of environmental and behavioral 
features (eg, microbiome, dietary habits, stress) on host 
ICD sensing.

Along with the establishment of humanized rodent 
models that enable the investigation of ICD in vivo 

(although with the caveats of a murine microenviron-
ment), we believe that these issues currently stand as 
the major challenges for the field in the near future. 
We surmise that the clinical efficacy of numerous agents 
currently employed for the management of cancer 
could be remarkably boosted if we acquire the capacity 
to use them as ICD inducers. Novel technologies are 
constantly improving our ability to monitor the immuno-
logical changes occurring in patients responding to ICD 
inducers, including alterations in the intratumoral and 
circulating TCR repertoire.332 Overall, the time is mature 
to take on the challenge to realize the clinical potential of 
ICD inducers and improve disease outcome for a variety 
of patients with cancer.
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